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Estimating the Accuracy of Protein Multiple Alignments 
Without a Reference

Estimating the accuracy of a computed multiple sequence alignment without knowing the correct 
alignment is an important problem. A good accuracy estimator has broad utility, from building a meta-
aligner that selects the best output of a collection of aligners, to boosting the accuracy of a single 
aligner by choosing the best values for alignment parameters. The accuracy of a computed alignment  
is typically determined with respect to a reference alignment, by measuring the fraction of 
substitutions in the core columns of the reference alignment that are present in the computed 
alignment. We estimate accuracy without knowing the reference by learning a function that combines 
several easily-computable features of an alignment into a single value.

For protein alignments, we consider 12 independent features that contribute to a quality alignment. An 
accuracy estimator is learned that is a polynomial function of these features; its coefficients are 
determined by minimizing its error with respect to true accuracy using mathematical programming.  
We evaluate this approach by applying it to the task of parameter advising, the problem of choosing 
alignment scoring parameters from a collection of parameter values in order to maximize the 
accuracy of a computed alignment.  Accuracy is evaluated by comparing to a reference alignment 
from the BENCH (Edgar, 2009) and PALI (Balaji, 2001) benchmark suites of structurally aligned 
proteins . Compared to prior methods for selecting good alignments, our estimator outperforms both 
MOS (Lasmann and Sonnhammer, 2002) and NorMD (Thompson, et al., 2001) for parameter 
advising, and gives a 15.4% boost in accuracy for the multiple alignment tool Opal (Wheeler and 
Kececioglu, 2007) on the hardest benchmarks.

Accuracy Estimator

Our estimator uses 12 feature functions fi(A) on an alignment A.   Key aspects of a good feature 
function are: (1) it must be efficiently computable, (2) it must be normalized so fi is bounded by a 
constant, and finally (3) it should measure some attribute that differentiates high accuracy alignments 
from others.  A few of these features are standard measures, but more than half are novel.

Secondary Structure Block Coverage
For each protein sequence its secondary structure is predicted using PSIPRED (v3.2, Jones 1999).  
A block in an alignment is a subset of the rows and a consecutive run of columns such that all 
residues in these columns have the same predicted secondary structure.  A covering of an alignment 
by blocks is a set of disjoint blocks with at most one block in any column.  The value of a block is the 
number of residue pairs in it, and the value of a covering is the sum of the values of its blocks.  The 
covering feature is the maximum value of any covering of the alignment, divided by the total number 
of residue pairs in the alignment.  Computing the covering feature exactly appears to be NP-
complete; we use an efficient greedy heuristic for approximating it.  The heuristic starts with a set of 
seed rows for each column that have the same structural type, and extends to the left and right, 
removing rows that do not conform to this type, until adding new columns does not increase the 
block’s value.  Each resulting candidate block is scored and a covering set of disjoint blocks is 
greedily chosen.  The figures below show an alignment colored by its residue’s predicted structure 
type (top left) and a block covering found by the greedy heuristic (bottom left), as well as a scatter plot 
of the covering feature for all example alignments.

           

Local Secondary Structure Agreement
We use the predicted secondary structure confidences output by PSIPRED to estimate the probability 
that a pair of residues in an alignment column are both of type alpha-helix or beta-strand.   The 
feature value for a pair of residues is a weighted average of these probabilities in a window of 
neighboring residues in the alignment, where the central pair has the most weight.  The feature value 
for an alignment is the average value for its substitutions.

Gap Open Density
We count the number of null characters in alignment 
that start a gap, normalized by the total number of 
dashes in the alignment.  This relates to affine gap 
penalties (Gotoh, 1993), which are often used to score 
an alignment.

Gap Extension Density
We count the number of null characters in the alignment, 
normalized by the total number of alignment entries, which 
also relates to affine gap penalties. 

Gap Loop Density
For each pairwise alignment, we measure the fraction of residues in gaps that are predicted by 
PSIPRED to be of secondary structure type loop (or coil).  The feature averages this measure over all 
pairwise alignments.  

Gap Compatibility            
The gapping pattern of an alignment is encoded as in cladistics by two binary states: residue or null 
character. For an alignment in this encoding we collapse adjacent columns that have the same 
pattern. We test the remaining set of columns for consistency by determining whether a perfect 
phylogeny can be formed, using the four gametes test.  The feature measures the fraction of pairs of 
columns that pass the test.

Substitution Compatibility
Similar to the gap compatibility feature, we encode the alignment’s predicted core columns, where the 
most prevalent amino acid equivalency class is mapped to 1 and all others to 0.  The feature 
measures the fraction of encoded column pairs that pass the four gametes test.

Information Content
Inspired by Herz and Stormo (1999), this feature measures the average entropy of the alignment, by 
summing over the columns the log of the ratio of the abundance of a specific amino acid in the 
column over the background distribution for that amino acid, normalized by the number of columns in 
the alignment.

Estimator Features

We derive an accuracy estimator from easily-computable features of an alignment.  The estimator is a 
polynomial function of alignment features.  Below  we express the estimator E for an alignment A as a 
quadratic function of the features fi. 

We determine the coefficients for the constant term c0, the linear terms ci and the quadratic terms cij 
by mathematical programming.  For the resulting estimator E to apply to any alignment A, each of the 
features fi must be bounded by a constant.  If the value fi(A) can grow arbitrarily large, then no 
constant coefficient ci or cij can give appropriate relative weights to the features, since alignment 
accuracy must remain in the bounded range [0,1].

Overview Experimental Results

Learning the Estimator 
Training by Mathematical Programming
We learn optimal coefficients for the estimator, based on example alignments from suites of 
benchmarks, by solving a linear or quadratic program that minimizes the error of the estimator.  The 
mathematical program is solved using MATLAB, considering two error criteria for fitting the estimator.

Fitting to Accuracy Values  The most straightforward approach is to minimize the squared error 
between the estimator E(A) and the true accuracy F(A) over a collection of example alignments A.  
For an estimator E that is a polynomial function of the features, this results in a quadratic 
programming problem, no matter what the degree is of the estimator polynomial. 

Minimizing the squared error is sensitive to outliers. For many applications, such as parameter 
advising, the estimator only needs to be a monotonic function of accuracy, and does not need to fit 
the actual accuracy values.

Fitting to Accuracy Differences  For the less constrained problem of finding an estimator that is 
monotonic in true accuracy, we consider the differences in accuracy between pairs of alignments A 
and B.  Let P be a collection of ordered pairs (A,B) of example alignments that are monotonic 
increasing in true accuracy: F(A) < F(B).  For each pair (A,B) the mathematical program has a 
variable dAB that captures the error between the increase in the estimator E and the true accuracy F.  
The constraints in the program guarantee that dAB is only measures when the difference in estimator 
under-shoots the difference in accuracy.  If the estimator difference exceeds the accuracy difference 
the estimator is monotonic for this pair and there is no error.  The objective function for the program is 
the sum of the errors to the power p, where p = 1 results in a linear program, and p = 2 gives a 
quadratic program.

The number of variables and constraints in the program is essentially the number of pairs of example 
alignments in P.  The example alignments are alternate alignments of the sequences in a reference 
alignment from a benchmark suite.  Set P is made up of two types of alignment pairs (A,B): when A 
and B are from the same, or different references.  To select pairs on the same reference, we examine 
the difference in true accuracy between all pairs and add to P, those above a threshold.   To select 
pairs that come from different references we sample alternate alignments from each reference, form a 
list of all samples sorted by accuracy and for each alignment in the list we choose the next highest 
alignment whose accuracy difference is above a threshold.  

Example Alignments for Training
Benchmark Suites  The suites of reference alignments used to train the coefficients of the estimator 
were PALI (Balaji et al., 2001) and BENCH (Edgar, 2009), which is a selection of alignments from 
BAliBASE (Thomson et al., 1999), OXBENCH (Russell et al., 1992) and SABRE (from SABmark, Van 
Walle, et al., 2005). Summary statistics on these suites are shown below.

Benchmark suite Number of 
alignments

Average number of 
sequences

Average sequence 
length

SABRE

OXBench

BAliBASE

PALI

303 5.5 169.9

336 6.4 130.1

120 5.3 298.8

102 13.5 238.7

Overall 861 6.8 185.4

Example Alignments   The alternate alignments for each reference were computed using 13 choices 
for parameter values, selected from a set of 556 choices. Each parameter choice consists of internal 
and external gap-open and gap-extension penalties for the Opal multiple alignment tool (Wheeler 
and Kececioglu, 2007).  Opal uses a single default parameter choice that achieves good accuracy on 
average for the benchmarks in these suites; parameter choices other than the default, however, can 
yield much more accurate alignments for specific input sequences.

Alignment Bins  The alignment instances for the benchmarks from these suites cover a wide range 
of difficulty, as measured by the accuracy achieved by standard alignment tools such as Opal.  The 
reference alignments were placed into bins according to their difficulty under Opal’s default 
parameter choice.  Easy instances are highly over-represented compared to hard instances in these 
benchmarks, as shown in the table below.   

Accuracy 
bins 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 0

Reference 
alignments 13 9 24 40 30 44 66 72 129 434

To correct for this bias in oversampling of easy instances, the objective function for the mathematical 
program has a weight on each example used in training.  The weight wA on the error term for example 
alignment A is the reciprocal of the number of reference alignments in the bin for A.  The weight wAB 
for the alignment pair (A,B) is wA if A and B are from the same reference, and if they are from different 
references it is the reciprocal of the total number of pairs that involve two references.

Training and Test  Sets  We evenly divided the reference alignments in each bin into training and 
testing sets, and generated example alignments from the references in a set by running Opal on 
each of the 13 parameter choices.  This produced a training and testing set of 5616 and 5577 total 
example alignments, respectively.  

We provide an efficiently-computable estimator for the accuracy of a protein alignment, without 
knowing the reference alignment.  The estimator is a polynomial function of alignment features, 
where the coefficients of the polynomial are learned from example alignments using linear and 
quadratic programming. 

We apply our new accuracy estimator to parameter advising, and on average achieve a 5% 
improvement in accuracy over other methods, with a 15% improvement on the hardest benchmarks. 

Further Research There are several directions for further research. An estimator that is a cubic 
polynomial, which provides an inflection point, may better fit the trend observed on the test data. 
More sophisticated prediction of core columns will aid several of our features, as the definition of 
core column is crucial to the calculation of accuracy.  While our current estimator is tailored to protein 
alignment, expanding the set of features will allow  it to be applied to DNA and RNA alignment. 
Applying our estimator to develop a meta-aligner, which chooses the best output of a collection of 
aligners, is a potentially fruitful line of research.

Summary

Amino Acid Percent Identity
For each column of an alignment, we look at each pair of residues and count the 
number of pairs that are in the same amino acid equivalency class.  We considered 
standard equivalency classes of 6, 10, 15, and 20 classes.

Secondary Structure Percent Identity
We use the secondary structure sequence for each protein predicted by PSIPRED, and for every 
induced pairwise alignment we measure the percentage of substitutions that are identities on the 
secondary structure sequences.

Average Substitution Score
This feature computes the average score of all substitutions in the alignment using the BLOSUM62 
(Henikoff and Henikoff, 1992) substitution-scoring matrix.

Predicted Core Column Density
This feature predicts core columns as those without null 
characters whose substitutions that are identities are 
above a threshold, and normalizes the count of predicted 
core columns by the total number of columns in the 
alignment.

Comparing Estimators to True Accuracy

An ideal estimator should be monotonic in true accuracy. For our 
estimator, MOS, and NorMD, the scatter plots to the left show the 
trend in the estimator’s value and true accuracy for all examples in 
the test set.  Note that this test set is disjoint from our estimator’s 
training set.

Comparing the scatter plots, our estimator has a monotonic trend 
and low variance. NorMD shows less monotonicity and higher 
variance, while MOS has better monotonicity and high variance. 
(To obtain the MOS estimate for an example alignment, MOS took 
as input all alternate alignments for the example’s reference, 
which is more information than was provided to the other 
estimators.)  The stronger trend for our estimator across all 
accuracies leads to improved performance for parameter advising.

Application to Parameter Advising 
The parameter advising task is, given a set of sequences to align and a set of choices of alignment 
scoring parameters for an alignment tool, to select a parameter choice that maximizes the accuracy 
of the alignment computed by the tool. For the 13 example alignments for each reference, we 
selected the example that the estimator assigned the highest value. When we use our estimator for 
this task we call it the advisor. In addition to MOS and NorMD, we also consider an oracle that always 
chooses the most accurate example, as well as a randomized estimator that chooses an example 
uniformly at random and for which we report its expected performance.  For comparison, we show the 
performance using Opal’s default parameter choice.

Average Accuracy of Advisor   The top figure to the right shows the true accuracy of the alignments 
chosen by each of the estimators, averaged over each bin.

Our advisor achieves a higher average accuracy than MOS and NorMD in all but one bin.  In contrast 
to MOS and NorMD, our advisor is above random across all accuracies. Compared to the best of 
MOS and NorMD our estimator is 5% more accurate averaged over all bins, and 15% more accurate 
on the lowest bin. Compared to a single default parameter choice, our advisor gives a corresponding 
accuracy increase of 5% and 17%, respectively.

Average Rank of Advisor   The bottom figure to the right shows how the alternate alignment for a 
reference chosen by the estimator ranks in the list of these alignments sorted by accuracy. Note that 
the rank of the oracle is always 1, and the randomized advisor is always 6.5 (out of 13).

Our advisor outperforms MOS and NorMD in all but one bin (where it ties NorMD). Between MOS 
and NorMD, MOS is better for higher accuracy alignments, while NorMD is better at lower accuracies. 
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